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SUMMARY

The purpose of the present report is to investigate the hodograph
method as it is applied in general to the problem of compressible flow.
First, the hodograph equations are given in various canonical forms
which are convenient for obtaining solutions in the different flow
regimes,

Since the coefficients of the canconical differential equations are
implicit functions, exact solutions are difficult to find. Consequently
different approximgtions are chosen so that some simpler differential
equations capable of solution can be obtained. For most of the cases,
fundamental or singular solutions are given or indicated.

The detailed development is concentrated on Chaplygin's second
equation. The first-order approximation is well-known as the Tricomi
equation, The second~ and thilrd-order approximations have a rather new
approach. Both approximations follow the exact gas law closely in the
neighborhood of the sonic velocity. The solutions are found to be
Whittaker functions and the associated confluent hypergeometrical
functions. Both approximstions can be applied to the incompressible
flow so that Chaplygin's procedure of borrowing the boundary conditions
can be used if necessary. For the third-order approximation, the corre-
sponding hypothetical gas law is derived and is found to differ very
little from the exact gas law. The transformation relation between the
hodograph plane and the physical plane is also given for the various
solutions considered.

To make a comparison of the present approximate solution with the
exact Chaplygin solutions, the flow through an aperture, studied by
Chaplygin and Lighthill, is reexamined. There is some difference in
the problem itself, as well as in the method of Chaplygin and ILighthill.
First, the vessel with straight walls inclined at an arbitrary angle is
considered rather than that with the wall at right angles. Second, no
association of the boundary conditions with those for incompressible
flow is made. The problem is treated directly as a boundary-value
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problem. The result calculated with the Whittaker function checks
well with that obtalned by Chaplygin and Lighthill.

1 - INTRODUCTION

For the isentropic steady two-dimensional flow of nonviscous com-
pressible fluids, the palr of differential equations in terms of the
streem function V and the potentiaml @ are nonlinear, and cannot
be solved analytically except for a few special cases. Chaplygin

(reference 1)1 introduced the hodograph method in order to transform
these nonlinear equations to linear ones, so that the available
clagssical mathematical analysis and the principle of superposition can
be applied: While there is a gain in the linearity of the equations,
some new difficulties arise in the hodograph method. First of all,

it is difficult, in general, to transfer the physical boundary condi-
tions to the hodograph plane. Second, the flow in the hodograph plane
usually consists of multiple-sheeted Riemann surfaces with a number

of singularities where the analytic continuation of the series solu-
tions becomes very complicated. Third, only one kind of a particular
solution of the stream function - hypergeometrical functions and
trigonometrical functions - has been obtained so far for the equations
in the hodogreph plane. By superposition, a series solution is
achieved, but is difficult to apply even if the boundary conditions
are known. Fourth, the transformation between the physical and hodo-
graph planes becomes singular when the Jacobian determinate becomes
zero or infinite., This is likely to happen when the supersonic flow
is imbedded in a subsonic. flow region. The existence of the so-called
limiting line (reference T) causes a breakdown of the entire flow.

In order to obtain some solutions in the case of subsonic flow,
Chaplygin discovered an ingenious method of obtaining usable solutions
for compressible flows by comparison with the corresponding series
gsolutions of the incompressible-flow patterns as the limiting case in
the hodograph plane. In the case of no circulation around the closed
body, the derived series solutions involve a free constant to be chosen
at pleasure. But fortunately each solution chosen corresponds to a
reasonable flow pattern in the physical plane. As the free-stream
Mach number increases, the body shape deviates from the image body in
the incompressible flow. Thus, in general, the body shape cannot be
preassigned and the compressible flow about it determined at a certain
Mach number. This method has been carried further by Tsien and Kuo
(references 2 and 3), Lighthill (reference 4), and Cherry (reference 5)
on transonic flow up to the occurrence of the limiting line. Some of

;A classified bibliography is given et the end of the'paper.
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their solutions apply to simple closed bodies with circulation. There
are difficulties in the analytic continuation for an arbitrary flow
pattern.

Although Chaplygin and others were piloneers Iin developing and
adapting the hodograph method to gas dynamics in the early part of this
century, results of the later Russian investigators were not availlable
in the English language up to 1940. Since the second World War, the
work of Russians has again assumed prominence in the field, namely,
Frankl (reference 11), Falkovich (reference 3k4), and Christianovitch
(reference 42). Along the line of formulation by Tricomi, Frankl's
proof of the existence and the uniqueness of the solution of Chaplygin's
equation in the transonic regime is interesting. Frankl and Falkovich
obtained the solution for the channel flow and showed that the stream
functlon is triple-valued in the hodograph plane of the axially sym-
metrical plane at sonic velocity. These results confirm whet has been
achieved by Lighthill (reference 4). Recently, Tomotika and Tamada
(reference 33) have formulated some approximate nonlinear hodogrsph
equations. A number of interesting particular solutions for the
channel flow have been obtained. Of course, the solutions are not
superimposable. Ehlers (reference 10) and Carrier, along the line of
Christianovitch, have obtained the fundemental solutions of the Tricomi
equation and the corresponding channel flow to the second order of
approximation.

With the notion of the correspondence of the incompressible flow
to the compressible, Bergman (reference 6) has developed an integration
method for calculating the subsonic flow. For the supersonic case an
extension of the Riemann method is also made by an iteration process
(reference 41). Bers and Gelbart (reference 55) have similaerly developed

a line-integral operator to construct the so-called E -monogenic com-

plex function which satisfies the hodograph equations or the general
Cauchy-Riemsnn equations in equivalence. All are important contribu-
tions to the solution of the differential equation but offer rather
difficult ways to obtain useful solutions for the flow of compressible
fluids.

In the last few years, Guderley (reference 30) and Yoshihara
(reference 36) have given a number of papers on transonic flows,
particularly with the application of the transonic similarity law which
was developed independently by Von Kdrmén (reference 29) and Guderley
(reference 30). They have achieved very important approximate results
in transonic flow.

In the subsonic case, if a linear approximetion is used to replace
the isentropic pressure-density relation, Kédrmén (reference 7) and




b , NACA TN 2582

Tsien (reference 14), following another approach of Chaplygin, have
obtained many useful results, particularly the well-known Kérmhn-Tsien
formula (reference 7) for pressure corrections. ILin (reference 15) has
discussed the conditions for obtaining closed contours in the physical
plane, if circulation exists. Clauser (reference 24) recently applied
this method to find the body shape with preassigned pressure distribu-
tion and this is definitely very useful in high-subsonic leminar-flow
problems. Garrick and Kaplan (reference 20) have another interesting
approach to pressure-correction formulas using Ringleb's solution
(reference 8) of a simple source and vortex.

The present investigation, as the initial step of the research
program of this challenging problem, is mainly interested in the
following three aspects of the problem:

(a) Besides Chaplygin's differential equations (reference 1),
can other useful forms of the differential equations be found system-
atically,. particulerly the canonical forms in the different flow regimes?
Of particular interest are the fundamental or singular solutions which
represent the types of singularities encountered in the hodograph plane.
Is there any method of comstructing such solutions as shown by Picard,
Hadamerd (reference 52), Hilbert, Riemann, and Tricomi (reference 53)7%

(v) If such fundamental solutions are too difficult to comstruct
or too complicated to epply tg'the flow problem, what other reasonable
approximations, besides the Karmén-Tsien (reference 7) approach, can
be mede so that some useful results can be derived in the different
flow regimes?

(c) It is well-known that the boundary conditions of the stream
function V¥ (not the potential ¢) are well-defined in the hodogreph
for polygonal profiles with or without free streamlines up to transonic
flow. As a reasonsble preliminary approach, cen the compressible flow
around such a given body be found?

In brief, this paper contains a systematic list of useful forms of
the differential equations. The canonical forms of the exact differentilal
equations are given for subsonic, supersonic, and transonic regimes.
Unfortunately, one of the coefficients of the equation is an implicit
function of one independent variable. This mekes it impossible to con-
struct fundamental solutions which would be of value for practical
application. ’

Approximations to the implicit function are chosen in such a way
thaet the solutions can be found from classical mathematical analysis.
In applying the approximations, three objectives are kept in mind:
First, the differential equation must reduce to the Laplace equation
as M—3 0 or M —3M, so that Chaplygin's procedure of utilizing
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the incompressible flow can be followed. Second, in the transonic
range, the transopnic similarity law of Kﬁfméh (reference 29) can be
applied end the simplified boundary conditions can be used. Third,

the singular solutions and the fundamental solutions in the subsonic
and transonic regime can be found so that the flow can be determined
directly if the boundary conditions in the hodogreph plane are assigned.
Or, alternately, the Riemann function in the supersonic regime can be
found, so that an integral solution can be obtained when the initial
value or the Cauchy data along a noncharacteristic line are specified.
Last, the characteristics method cen be used.

‘In the present paper, & number of approximations for the canonical
forms in the subsonic flow are given. The zero-order approximation is
actually the same as Von Kdrmén's approximation given in reference 7,
equation (63), or reference 13, pages 186 to 188. Both differential
equations of the first-order approximation can be reduced to the
Laplace equation in polar coordinates. The singular and fundamentel
solutions have been given.

The second-order approximations to the differential equations can
be reduced to Stratton's equation (reference 70) by means of the
separgtlon of variables, The particular solutions are indicated.

There are some better approximations which should hold for any
subsonic Mach nunmber. They are shown in section 3, "Solutioms to
Canonical Forms of Approximate Differential Equations in Subsonic,
Supersonic, and Transonic Regimes." Similer approximations are obtained
in the supersonic region., Of course, for each approximation, the
corresponding pressure-~density relation must be determined.

If the general class of singular solutions in the hodograph plane
can be obtained, then it should be possible to solve a large number of
problems by a suitable placement of the singularities in the hodograph
plane to satisfy the desired boundary condition.in mich the same way
that sources, vortices, doublets, and.so forth are used in incompres-
sible flow.

Some investigations on possible approximations to Chaplygin's
second equation are made in section 4, "Different Approximations to
Chaplygin's Differential Equation and Their Solutioms." This second
equation is more convenient to use in flow than the first equation.
The first-order approximation to this differential equation has been
shown by Frankl (reference 11) to be Tricomi's equation, Both the
second~ and third-order approximastions are shown to be associated with
Whittaker's equation (reference 61). The third approximastion is suf-
ficiently good that it should give fairly accurate results in all
transonic-flow problems. The corresponding hypothetical gas law is
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shown in section 5, "Hypothetical Gas Law Corresponding to Approximations
of Cheplygin's Second Equation," and deviates so little from the exact gas
law in transonic range that the exact gas law may Justifiably replace

it. The transformetion relation between the physical and hodograph
planes is also shown for the third approximstion.

The polygonal body, either closed or open, is known to give simple
boundery conditions in the hodograph for the stream function ¥ but
not for the potential ¢. The particuler solutions obtained by the
principle of separation of variables and the series solutions obtained
by superposition cannot be applied directly without solving systems of
an infinite mumber of similtaneous equations to determine the Infinite
number of coefficients in the series. In this class of bodles with
one or more convex corners, the solution of the incompressible flow
cammot be used because the velocity at such a corner 1s infinite
according to the theory of incompressible flow. Physically, the flow
passing such a body is always transonic in character, no matter how
low the free~stream velocity is. As shown by Guderley (reference 31)
and Busemann (reference 38) some shock always occurs at such corners.
But with the simplified assumption of the transonic similerity law,
the flow about this group of bodies should be obtainable. In
section 3, "Solutions to Canonical Forms of Approximate Differential
Equations in Subsonic, Supersonic, and Transonic Regimes," a more gen-
eral simplified equation satisfying the transonic similarity law is
given and the solutions are shown.

For sn open body built with straight-line elements but with no
convex corners the problem can be attacked with the Chaplygin technique
or solved directly as & boundary-value problem. In this case, no free
constants can be chosen, and the solution 1s uniquely determined.

Owing to the complicated nature of the asymptotic behavior of the
Whittaker function with a very large parameter, and simmltaneously with
a very large value of the independent variable, the future work will
devote a considerable amount of time to finding the asymptotic solu~
tions corresponding physically to different flow regimes. This is an
important step in solving flow problems with the Whittaker function.
The Whittaker function converges very slowly for a large parameter, and
is quite similar to the Chaplygin function in this respect.

In order to demonstrate the method, the flow through an aperture
is reexamined in order to check with the results of Cheplygin and
Iighthill. Tt is found that the third-order approximation agrees very
well with thelr work. This is given in the last section of the paper.

This investigation, conducted at The Johns Hopkins University, was
sponsored by and conducted with the financial assistance of the Natilonal
Advisory Committee. for Aeroneutics.
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2 - CANONICAL AND OTHER FORMS OF DIFFERENTIAL EQUATIORS IN
SUBSONIC, TRANSONIC, AND SUPERSONIC REGIMES
2.1 - General Transformation of Differential Equations in
Hodogreph Plane
The pair of Chaplygin's first-order simultaneous partial differ-

ential equations for the stream function V and the potential ¢ in
the hodograph plane (equations (11.10) and (11.11) in reference 13) is

3 _ _Pol-Mw

dq P a o8 (1e)
o pPo Y
S q 3q (1p)

where po/p and 1 - M2 are given functions of the independent
variasble q.

The sbove system can be transformed to many other forms which are
more adapteble for analysis if a new independent varlable q is
introduced to replace ¢, thus: '

Q= Q(a) (2)

2A list of symbols is given in appendix A,
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In terms of Q, equation (2) yields

p _ M2 X
$aq_ Pol-u oF (3a)
9q dg P q 36
B _Po dq (3b)

¥ »p dg 0Q

Eliminating @ and then ¥ from the above, a pair of second-order
partial differential equations 1s obtained as follows:

%y 1~ M2faq aaqf d 4 Po _ aQ
an + q2 Qii) - SE % log, |—a—J| =0 (ka)

Pp, 1-uaq\-23%B 3pa [Z‘b.l-Mz@'l] =0 (k
BQ? + ( ) log, ) 0 (4v)

Of course, if @Q 1s chosen equal to g, the following pair of equations
is obtained:

—_—

)
Py, 1-u a%y+1+m2_a_xg=o ™
32 2 202 a  oa
2 2
g 1-M2Pg a (pol- _Q_O (3)
qu q2 dJg2 da

which have been used by Ringleb (reference 8). Now make some proper
choice of the function Q(q), s0 that either one or both of the above

equations can be transformed to some simpler form.
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2.2 - Cheplygin's Differential Equations - First Form

In Chaplygin's differential equations of the first form, he
introduced the algebraic relation between Q &and q as

2
Qq) =7 = L1 ¢ (5)

2 (éo*)z

where a * 1s the staegnation sound velocity. It is obvious that the

range of T (T has an important physical meaning. It is the ratio
of the kinetic energy of the gas to the total energy or enthalpy) is

4 , and Mach num-
a,¥*
ber M. Equation (lta) transforms to his well-known equation

from O to 1. TFigure 1 shows the relation of T,

o ot ;Y . 1-mr %y =0

2=t X (68)
oT ot 1.2
(1-nF 2r(1 - )P 38
1 7y + 1 p B

vhere B = > My = , and the relations — = (1 - T)° and

7-1 7"1 po
2 l-]J.lT

1l ~ M® = ———= are introduced. By means of the principle of the

1l-7

separation of variables, the particulaer solutions of this equation are
combinations of hypergeometric and trigonometric functions. The dif-

ferential equation in terms of the potential @ transforms to a much

more complicated form

r‘;‘ _B_ 21’(1 - T)B-Fl é?_ 3 (l - T)B 82¢ =Q (6b)
or 1~ pqT or o7 362

and its solution is difficult to obtain directly, but it can be obtained
by integrating the differentials of V. Actually, there are four sin-
gularities of this equation - three regular ones at T = O,

pp 2B+ 1

, and T = 1 and one irregular singularity at T = .

Therefore its solution is not so simple as the other equation.
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2.3 - Chaplygin's Differential Equations - Second Form

To eliminate the last term in equation (L4a), choose

Qg) = ¢ (7)

where o is defined by (c; 1s a constant)

Po 4o _
- %35 = S (8)
or
a
o=c, =2 (9)
P, 4

Substituting into equation (4a), the last term drops out and

Ry K Y
+ =0 (102)
3" c,” 67
where
po 2 1 - p.lT
k= (297 (1 - - (11)
(p) ( (l _ T)pl

In figure 2, K, is given as a function of 7. Of course, K should
be expressed in terms of o, Unfortunately, it is an implicit func-
tion of ¢ and the differential equation is impossible to solve
exactly. Figure 3 shows the behavior of K as a function of o for

the case Cqy = -1 and 7 = 1.4 where the upper limit of the integra-

tion is q = a*, the sound velocity. It is of interest to observe the
two asymptotes of the K - o curve: (&) K—>»1 as M—>» 0 or

g —» o and (b) K—> - as o — -0.2513. The function o can
be integrated as follows:



-

2
-0.2513 + vann~2(1 - 1)/2 - (1 - T)l/zE‘ ¥ l.; Upge ~5T) :l

(12)

where T. is given in equation (5) and 7y = 1.4- is explicitly intro-
duced, In figure 4, o is given as a function of 7. If equation (9)
is substituted into equation (4b),

Q/

n
1.

154

5 )
g_g + K -&dg(loge K). =0 (10b)
o

Q/
\¥
Q/

g g

which is rather more complicated.

2.4 - Another Form of Chaplygin's Second Differential Equation

To eliminate the last term in equation (4b), introduce

Aq) =v (13)

where v 18 defined by (cv is a constant)

P a fav ‘
—_ —J)=c (14)
Po 1 - M2<dq) v )
or
a*
Py 1 _
Vv = -cv 2 1 Mz dg (15)
P q
q

—S+=5=0 (16)
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where KX is the same as defined in equation (11) and cy = -1 is
chosen. OFf course K should be expressed in terms of v, if it were
not an implicit function of v. Wo detailed investigation will be
given in this report.

Similarly it can be shown that
Kﬂ+§2—w—+§w———@0geK)=0 (168)

Tt should he noted that equations (10) or (16) are simpler for only one
of the pair, at the sacrifice of the other.
2.5 - Canonical Forms in Subsonic Flow
It is well-known that the fundamental solution may be found when
the differential equation is reduced to the canonical form. Therefore,
the canonical form is worth while to obtain. If the velocity is sub-
sonic everyvwhere in the domain, the canonical forms of the differential

equations can be found in equation (1) in the subsonic or elliptic
range. Take

Q(q) = o (17)

such that, for M<1,

}___l'f(ée)e -1
q2 da

or

aw = - " — L 4q (18a)

1/2
(Actually dw = t(l - M?) / %%. Here the minus sign is chosen so that
a¥ can be imposed as an upper limit.) After integration,
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(1 - Mz)1/2

q

dq (18b)
q

Figure 5 shows ® as a function of T, M, and 0. In terms of M
or T,

g
1

o\1/2 '
= 1/2 tann~ (2= M - tann~1{1 - 142)1/2
1 ™

1/2 1/2

1~ T 1l -

ull/2 tann-L Hy 4 ]-1( l~l17> (18¢)
p(1 - 7) 1-7

Equations (la) and (4b) become

%y B%Lf o
oY ., S5 + X i(loge Kl/2) =0 (19a)
3% 3% 3 g 1/2

If ¥ = K_l/ s and § = K /4 §* are introduced, the sbove equations
can be written as

%Y * ~52\l!* l3 K'Y 1 K"! _
PR * 362 ¥ 16(1() "L K vx =0 (19¢)
BEQ* 82¢* _ ik 2 1 K" _

which are the csnonical forms of the differential equations in subsonic
flow and were first pointed out by Bergman (reference 6).
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K d(loge gL/ 2)
K dm

(b1 - Duyr?
(1 - p17)3/2(1 - )2

L
- _ Bl M (20)

by - L (1-»12)3/2

a(108, X1/2)
Figure 6 shows ™ as a function of w.

Unfortunately the coefficient of the first derivative is an
implicit function of ® and also is singular at M = 1. This prevents
the use of Hilbert's and Hadamard's approach (reference 52) to formulate
the fundemental solution. Bergmsn (reference 6), Bers (reference 17),
and Gelbart (reference 27) in this country and Eichler (reference 58)
in Germany have given the integral solution of equation (19) but the
process is very complicated. The present paper will give some solu-
tions of the above differential equations (19) under certain
approximations.

2.6 - Canonical Forms in Supersonic Range

If the velocity q in the flow is entirely supersonic, take

Q(a) =@ (21)

where  1is defined by

M2 - 1(&9)2
= ==} =12 (228)
q? dg

or, if the positive sign is chosen,

(2 - 1)/2

q

aq = dg



3H

NACA TN 2582 15
After integration,

1/2
Q =j\q——-——(M2 'ql) dg (220)

where Q can be expressed in terms of M or T, each in two ways,

2 _ 1\1/2 .
Q= l"-ll/z tan']‘(M—-ul—l) - tan'l(Me - 1)1/2

- 1711/2 waT - 1\1/2
1/2 yon-1| 11T - tan~ YL T 22
or

2
1/ 1

- cos”

D
I
=

+
—

T
=

t

=
S’

e Loy

pa(1 - 7) 1/2 T 1/2
l—lll/z COS"l[l—-—-—'—-—J - cos-1 -(Tl%-_lF] (226.)

Figure 5 also shows £ as a function of T, Actually Q is a dis-

torted velocity magnitude such that = +8 become two families” of
simple straight characteristics inclined at *45°. (Refer to p. 215 of
reference 13.) Equation (4) becomes

.

%y é% N d 1/2] _

2 32 X —anEOge (-K) :| =0 (23a)
¢ 32 3 a 1/2

32 32w —E"ge (-K) /:l =0 (23v)
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In the hodograph plane, the characteristics are the same as those of
the simple wave equation and are invariant to the behavior of K(Q).

If ¥ = (-K)~ l/h and @ = (—K)l/lL * are introduced, the following
equations are obtalned:

2.1% 2 1
:g i E§6 -EEJWH=0 (23¢)
1)
82¢* 829* ]~( ,)2 1 K" % _
d[i08e (-K)l/%] _ (”l - l)ulTe
= (a7 - 1320 - /2
L
__" M (2)

-1 - 1)3/2

a[1oge (-193/2]

Figure T gives in as g funccion of . The Riemann

function (reference 52) always exists uniquely and the solution of both
equations can be constructed theoretically for a region bounded by
characteristics if the Cauchy data are given along a line that is not

a characteristic. Owing to the implicit nature of the coefficient

a
aa
solution will be too complicated to construct. Besides for the super-
sonic flow the Cauchy data in the transformed hodograph plane are not
completely known in general. Therefore the Riemann function is not

of much use in the hodograph method.

loge ( K)l/:] as a function of ¢, the Riemann function and the

The present paper will also show some solutions to the differential
equations under certain approximations. It should be noted that Q
and o are related by Q = iw 1if it is desired to extend the defini-
tion of ® +to the supersonic-side. Such an extension seems very

obscure as yet in its meaning. Fortunately (dﬂ)2 always occurs in
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differentiation, and the derivative of the logarithmic term does not
depend on such an extension. Therefore equations (23a) and (23b) are
single-valued.

There is another interesting feature of the canonical form. In
the hyperbolic region, the characteristics are the same as those of the
simple wave equation while in the elliptic region the imaginary char-

acteristics are the same as those of the Laplace equation. They are

invariant to physical conditions. The physical law influences only
the first-derivative term.

2.7 - Canonical Forms in Trensonic Domain

Now choose Q(q) = ¢ where ¢ is defined by

_ w2 -2
1-M 2M G_Z) - +2(e) (25)

and where f(€) is an arbitrary function. (The upper sign is to be
used for subsonic flow and the lower sign for supersonic flow.) Then,

ol 1/2
[ | ce A, (26

For M< 1 choose

2

f(e'>(‘;;')2« - L (258)

Equations (4a) and (4b) can be written as

0 (27a)

3%y Y 3 a x ]1/2
fe?! 1 —_
32 e 02 | 3¢ der | e lif(e')]

3, £(e) ¥ 4 {mge [ﬁ(e'ﬂl/a} =0 (27b)

det2 62 Oe' de'
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where €' is used for . ¢ _in the subsonic region. For M >1 choose

myfde"\2 _ M - 1
£(e )(dq) - (25b)
(5511)2 X 392 de" de" e £(e")

3% w °9. P a Wa1/2]
B oy B 2ot f, st -0 o

n

where € is used for ¢ 1in the supersonic region.

It is interesting to note that the above two sets of equations can
be combined into a single set if f(¢) is an odd function, that is,

2 2
f(e)(di) el (25¢)
dg q2
. Py By d a (-x)|2/2| _
362 - f(G) aoj + 'é-e— EG- 108& f(G) =0 (299.)

> 2
B _ pe) 3P %g %{loge E—K)f(e)]l/z} =0 (29b)

de? d6°

which are valid for both M<1 and M > 1. It should be noted that
€>0 Pfor M>1 and €< 0 for M1,

The canonical form of the mixed differential equation is explained
as follows. If, following Tricomi (reference 52) f£(6) is set equal

Po\2 “
to € and -K = (-p—) (# - 1) 1s introduced, equation (29) reduces to
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Ry 1a¢d[ _K]_

32 302 23 acl e (?) =0 (30a)
P B 1Bar (] -0

de? ) 392 2 O¢ de[ioge ( GKE] Y (30b)

which are valid for the mixed region. They can be obtained directly
3. (30) 3_(3 )2
by setting ¢~ = (2 Q) in.equation (23) if M> 1 and -6~ = 5 w

in equation (19) if M < 1, These may be called the canonicel forms

of the differential equations in the transonic region. The solution of
the exact differential equation is obviously difficult. Some singular
solutions of the above equation under approximations can be obtained

as will be shown later.

It is well-known that the characteristics are fixed for all linear
hyperbolic differential equations. But there is an interesting feature
in the canonical form such as equations (30a) and (30b), because the
characteristics are fixed and invariant to the function K(e) or to
the physical problem from which the differential equation is derived.
The characteristic equations are '

(6 - 65)2 - 3'53 =0

which represent two families of characteristics of cubic parabolas with
cusps at thelr points of intersection with the ¢ = 0 axis.

Figure 8 shows ¢ as a function of ® and Q. TFigure 9 shows
1/2
€ d Eoge (%) /:] as a function of .

de
3 - SOLUTIONS TO CANONICAIL FORMS OF APPROXIMATE DIFFERENTIAL
EQUATIONS IN SUBSONIC, SUPERSONIC, AND TRANSONIC REGIMES
In the last section, the general derivatives were shown of the
canonical forms of the differential equations in the different regimes,

At the same time, it is found that the coefficient of the first-
derivative term in any one of the canonical forms is always an implicit
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function of one independent variable, The exact solutions are very
difficult to obtain. It seems justifiable to seek some differential
equations with an approximate coefficient for the first-derivative
term so that solutions are relatively easy to formulate. Of course,
the validity of the solutions thus obtained must be examined and the
limits of the range of application must be defined. In this section,
the solutions of the approximate differential equations will be given
and. their applications will be discussed.

3.1 - Subsonic Canonical Forms - Equations (19a)

and (19b)

In the subsonic case three approximations to the canonicael form of
the differential equation will be given. Figure 10 shows the exact

2
curve of K;/z = %?(l - M?)l/ against .

Zero-order approximation of Von Kdrmén.- In reference T, Von Kﬁrmén
suggests taking

/2 L Po _g2)2 oy Ly 2)Y/2 (31)

p (=]

where p and M, are the density and Mach number at the free stream.
In figure 10, the horizontal dotted line shows the approximation

Kl/2 . It is apparent that the approximation becomes better as

w—>0 or M-—» 0. With this approximation, the coefficient of the
first derivative becomes zero in equation (19) and so

v, H_,

2
Wl 02 (322)
P, P _ (32b)
P 02

which are Laplace equations. These equations are invariant under
translation and rotation. Therefore,  can be set equal to O at
sonic velocity a¥* and so defined as
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a* (1 - M?)l/Q .

2 q' (33)

q

Of course, Chaplygin's procedure of utilizing the incompressible-flow
pattern to find the corresponding compressible flow can be followed.
There is another possible approach. If the types of singularities and
their locations in the flow of the hodograph plane are known and if,

in addition, the boundary conditions of the stream function are known
under reasonable assumption or under assignment, the solution of the
flow should be obtained uniquely by superposition of the fundamental
solutions corresponding to the types and location of the singularities.
After the solution in the hodograph plane is obtained, the corresponding
flow in the physical plane should be checked to determine if it is pos-
sible or not. To serve such a purpose, the fundamental solutions of V¥
and @ due to a source at ®, and 6, are given as an example.

¢(a),9; wo,eo) = -log, [(cn - 0)0)2 + (6 - 60)2]1/2 (34a)
0,05 0,00 = -tand 70 (3k0)

Of course, with the simple source, there can be built up the potential
and the stream function of higher-order singularities such as doublets
and quadrupoles. Actuelly, it is more convenient to treat the problems
with functions of complex varisbles, because V¥ and @ are harmonic
functions.

First-order approximation of the canonical form.- It has been known

for some time that the above approximation is not very good at high-
subsonic velocity. A higher order of approximation can be made as
follows. Instead of taking the approximation as given in equation (31),

the approximation can be made accurate to the slope of the curve Kl 2
agalnst o at the free-stream condition, that is,

Kl/2 ~ a + bo (35a)
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where
1/2 .
a=(xl/2_a>dei) (35b)
1/2
b = (de: )M (35¢)

if o = o, 1is chosen as the free-stream condition. This approximation
is shown in figure 10. Then equation (19) yields:

3%y %y DO
aw2+392—a+'ba)am_o (362)

.3, v _B_, (360)

Bm? * 862 a + bw

Introducing ® = o + into the above equations,

&
b

+—p-===0 (37a2)

2 2
s s I A (370)
&= 2° © %

These are identical to the equations of Stokes and Beltrami for axially
symmetrical flow, The particular solutions of interest are the well-
known Bessel and trigonometric functions, and are not given here.

These differential equations are invariant under translation in 6.
From Lemb's "Hydrodynamics," the singular solution corresponding to a

or w, =0, 6, is

source at oy = - o

a
b
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¢QD + %3

6; —%,eo) = — 1 v
Ka)+ %9-‘-) + (6 - 90)2:]

23

(38)

Recently Weinstein (reference 56) has shown that, for the axially
pymmetrical potential, the fundamental solution for a source at

(‘Do + %,90) is

2, ) 511/2
o b o) - 2ol o

‘° o+ e 3

where the function R(m + %,6) is regular at the point qu +

+:RGD4'%PG)

a
b’ 90) ’ :

The corresponding singular solution to the stream function is

6 -8
"lf(a)+-§6-—36)= °

o 5+ (o - oo

(ko)

The fundamental solution of the stream function is not given here,
because it is long and involved. The singular solution for more com-
plicated sources can be built up easily. Therefore, if the boundary
conditions and the locations and types of sources are given in the
hodograph plane, the flow in the hodograph plane can be found with the
classical technique of boundary-value problems. If the boundary con-
ditions are not known, the series solution of the Iincompressible flow

may be considered and Chaplygin's procedure followed.

Second-order approximations.- Choose the following approximation:

Kl/ezx a + bw + cw2

where

1/2 2.1/2
. - =/K1/2_w(d.K )+_1_w2dx/
dow 2! aaP .

(.l)=(Dm

(41a)

(31b)
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1/2 1/2
. (dK % > (41c)
dw doP W=
2.1/2
c = —l-<1 K > (k1a)
d’a)a =

This approximation is also shown in figure 10. Then equation (19) yields

2 2
B‘J?’_l_a\l'_ D + 2cw _a_llf_:O (11-28.)
2P 2% &+ bw+ caf O
8_22+82¢+ b + 2cw §Q=O ()-I-zb)
X® 362 a + bw + cuf oW
These equations can be written in another form by introducing
— 2c o - 2 (j_f b2 >1|ac).
(bg_hac)l/a 2¢
2 2
a¢+aw_ 1,1 aw=o (43a)
am'2 592 o -1 o + 1/
2 2
a¢+a¢+( 1,1\ _ (43p)
32 362 ® -1 o + 1)

The particular solution can be obtained by the principle of separation
of variaebles, if it is assumed that
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Hor,0) = 1V ()nVe) - 27 3;3} ¥, (D) (4ka)
dor,0) = 4 V(@M (e) = 212 VoL g (Vo) (1)

where V¥ and @; satisfy the ordinary equations

a2y oy &Y

- - v, =0 Iy
(@)2 (@)@Z-1a L toe)
dp, 2ot Gfy 24 - "
(dmt)2+(mt)2-1am'—v 1 =0 (45D)

which are special cases of Stratton's equation as shown in reference TO.
The particular series solution can be obtained but it is too long to
give here,

Comments on above three approximations.- If the above three approxi-

mations are plotted in comparison with f(—b(loge K‘1 / 2) against o in

figure 6, they are not satisfactory. The zero-order approximation
maintains a zero value, although the true value of %(lOge Kl/ 2) at
w,, may not be zero. The first-order approximation becomes roughly the

zero-order approximastion to (%D(loge Kl/ 2) at ., while the second-

order approximation becomes roughly the first-order ome. It is apparent
that the above procedure can be repeated to find all the approximations
to the curve in figure 11, but this kind of spproximation is not shown
here. Some other approximations are given to take care of the asymptotic

behavior of %(loge Kl/e) as o —>0 and W —> w,
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Approximations o singular behavior of %(mge x/ 2).- Figure 11

]
- a K_'L/z .
shows the curve of d—a) loge against w. Some simple calcu-

lations will show that 1lim o —d—(log x1/ 2) = -2 ana
®—0 e © 3

4 Po 2\1/2
EE‘O&’-‘ T(l - M ) / —>0 as w —3 «», Therefore, a simple, but

good, approximation is to assume

'é%(lOge Kl/z) = Ié_;(' ~ % (h6a)
The constant a can be chosen in two ways:
(1) Choose a = - —%—-— if the exact behavior at sonic velocity is
desired. This is shown in figure 11.
(2) Choose a such that & = (E) , if the flow velocity in
B \ZK/

the neighborhood of free-stream velocity is desired. If o, is

infinitely large, it automatically reduces to Ka{rmén's approximation.
This case is also shown in figure 11,

This approximation is important because the fundamental and sin-

gular solutions can be obtained similarly to equations (38) and (39)

except the one-half power is replaced by the g- power.

The next approximation along this line is to assume .

2 (10g, ¥1/2) x B (46)

where a and b are two free constants to be ¢hosen.
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A few choices can be made:

(1) Take a = --L and b to be such that K. = =%/3 _ ¢
3 _ 2K wm(l + bwb)
the Iinterest is in the sonic and free-stream velocities.

(2) Take a and b such that —=2 = (I—i'-) and
. o(1l + bw) 2K/ s
2K

graph (fig. 11) checks well with the exact curve. The differential
equations are simplified to

1
(5;) are satisfied, for example. This case, shown in the
=0, 5, )

2
oY + 2y - 2 v _ (47a)
32 30 ol + bw) dw
2, %0, a3 _
&D2+392+w(1+ba))8<u—0 (¥70)
Similarly, it can further be assumed that
K . a(l+ bo) (46c)

2K " o(l + cw)

where a, b, and c¢ are free constants. One case is shown in the
graph (fig. 11) with a, b, and c determined from the values of gé

at 0.5w,, ®,, and 2o, It checks very well with the exact curve.

3.2 - Supersonic Canonical Forms - Equetions (23a) and (23b)

Zero-order approximation.- Following the approach of Von Kérmin in

the subsonic case, there can be chosen in the supersonic case the
approximation

(-2 - 22 - )2, 2,2 - 1)1/2 (32)

[ <]
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and
Q5 1/2
-1
Q= QM___l_ dq’ (48b)
q
ax*
where g 1is always supersonic in the domain of the flow pattern. Then,

the coefficient of the first derivative in equation (23) is zero, and

which has the solutions

¥(a,6)

g(a,6)

2 2
-:;‘2"- - :7‘2"- - (49a)
2 2
%g ] %g -0 )
F\y(n + 0) + Gw,(ﬂ - 9)
F¢(Q + 0) + G¢(Q - 9)

which are well-known classical wave functions. The approximation is =a
straight line parallel to the Q-axis as shown in figure 12 with Q =Q_.

First-order approximation.- Along the same approach as the subsonic

case, it is easy to show

3%y _ 3%y b o _ o (50a)
e 3¢° &' +Db'a -

o o .

é_g - g + b ég = (50Db)
aﬂ2 392 a' + b'Q o
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where

40 Jo-q_

b! = E("K)l/z]
2 le=q_

Introducing Q= Q +-%% into the above equations,

—— = . ==X=0
305 9= Q00

2 2
a_g_.a_._¢.+éa??_=o
32 9% aon

If the following characteristic coordinates are introduced,

A=0+26
p.=-§+6
and then,
O o 2(A - p)\or  ou

¢ 1 @g_y):O
M 2(r-plor

(51a)

(51b)

(52a)

(52b)

(53a)

(53b)
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which ere Euler-Poisson's equations with B = B' = -~%? in ¥ and %

in ¢. The Riemann function corresponding to ¥ can be shown to be

1/2 1/2
o - A B - Ag
Toms Agskg) = (ko )(u ().) ) 2Fl(—-:aL—, —%’ 1; or) (54)
where Ag (or a, + 96) and p, correspond to q  + %% and 6, the

point of interest, éFl is the hypergeometrical function, and

_ (X - Xb)(” - “o)
(* = Ho)(» = o)

Tt becomes too cumbersome to write the Riemann function in terms
of the original coordinates @ and ©. This approximation is shown at
Q=0 in figure 12. Since the Cauchy data are difficult to assign to
the potential the correspponding Riemenn function becomes useless. There-
fore, with the above Riemann function ¥ the stream function ¥ at a
point (QO,G) can be found by the Riemann method, 1f the Cauchy data
are sufficiently given. In general, even if the Cauchy data are suf-
ficiently known in the hodograph, the Riemann method is rather difficult

to apply.

Second-order approximstion.- Following the same procedure as before,
it is not difficult to show that

v &y [ 1 1])a_w=
e 362 (ﬁ + 1 * Q- 1/38 0 (552)
P % (1 1\
352'392+(6+1+§-1)£'° (55v)
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where

— 2c! b! 1 tat
o [ - uaxc'__ll/e(ﬂ - 20') (212> ) 56)

a2(-x)1/2

2
aQ Q=0

(<]

(57)

The Riemann function of V¥ is under investigetion, and is not so
easy to obtain unless a long series solution is adopted. However, the
particular solutions are of Stratton's type, but are not given here.

Some better approximation of the coefficient é%-loge (—K)l/%] can

be made, but the solution to the resulting equation will be more diffi-
cult to obtain.

Comments on above approximations.- The above approximations become
worse as {,—> 0 or M — 1. Even at very large Mach numbers, they
are not very optimistic approximations.

3.3 - Approximations to Transonic Canonical Forms -
Equations (30a) and (30b)

Take the transonic canonical forms of equations (30a) and (30Db)

PV B 1 a[ : —K]_
—a? - € 59—2- + -2— g—d—e loge (_G_) =0 (308')

X _ 3

vakhw i Eoge (-Keﬂ =0 (30b)
€ 6 ‘

=
Y
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Following Guderley (reference 30) introduce the variable

2 2
¢ = (2)3 95 = §§ (supersonic) (58a)
€
t = (%)3 Q§ = ig. (subsonic) (58b)
€

It is interesting to note that £ > O in the supersonic side and E<o
in the subsonic side of the hodograph plane. The equation { =1 corre-
sponds to the pair of characteristics sterting at 6 = O on the sonic
line. The independent variasble 6 can be eliminated in equation (30a)
and equation (30b). Since the two equations are equivalent in behavior,
only equation (30a) is treated here. Thus there is obtained

RV 2 , ¥ €33y W] 1 _g_gd[ —K]
g(g’l)a_ge’§€§agae+?§+éz"E+§§’6a_el°ge(?) ¥

3 J € a -K _

Now examine what conditions must be imposed on ¢ éL log, (i;i]
6

so that the variables { &and ¢ are separable in the above equation.
First, assume

V(e,8) = ¥y(e)vo(t) (60)

Equation (59) yields

a2y ay _ av
E(1-8) —2+ l-{l-g—s--—i—idloge —5]+1g —2 .
d§2 2 3 (e )

24 da
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2
where K = (%?) (l - M?) is a known function of ¢. In general, the

above equation cannot be solved unless the following conditions are
imposed:

£_2_6_E“’_1_f_i[ _—5]_
3 3V de 6 de 108 ( e) = ag + Bg (62a)

and

2 4%y ay .
le 1 1 € 1 ¢ @a k| _
9¥1 @2 I Vg dc 24e Eoge (‘;)] = aghyg (62p)

where ag and By are individual constants to be chosen later. Equa-
tion (61) can then be written as

v, [ 1 av,
- 0 E -t o o) ab=0 (&)

wvhich is a hypergeometric equation. Its singulerities are { =0, 1,
and o, The general solution gbout ¢ = O is ‘

QFl(a»s,BS; % §) ' ]
¥o(t) = 1/2$ (le] < 1) (6la)
2F1(C"s + 58 + 3 B C){,

~t

The solution about ¢ =1 is

(1 g)2ePs 21?1(—;- - gk - Bs B -ag - Bg+ 11 - §)
¥a(8) = Gl -t] < 1) (k)

Y2y ;)%_“B~BB

¢ oF1(L - gyl - By B - o - Bg + 1 1 - ¢)
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Following Kummer (reference 61), all the 24 solutions about the
3 singular points { =0, 1, and o« can be obtained. The triple-~
valued behavior of Vo({) for ¢ = O can be shown easily. This

agrees with the results of Iighthill, Guderley, and Carrier. Under
the imposed condition, it is not difficult to show that

Constant (65)

E%B[ - CS€3(BS-Q’S)]

where ag # Bg and 'Cs is a free constant to be chosen later., Also,

¥q(e) =

if by definition zg = g-é% loge (2551, its approximate value Eg can
be calculated from equations (62a) and (62b):

1+ cs€3(BB-aB)
3(Bg-as)

1 - cg¢

(66)

Zg =1 - 3(Bg - ag)

The exact value of 2z, can be determined from equation (25a) with
2
£(e) = ¢ and K=(Ep2) (1 - ).
It is necessary now to choose the approximate variable ES S0 as

to have the same ordinate and slope as 2zg at € =0 (or M= 1) if

the flow at sonic speed is of particular interest., It can be shown
that, at € = 0O,

z_ =0 (67a)

dzg g [ d[ —K] "
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These conditions determine

2cge

Y, = - s (682)
1l - cg¢ N
1 ‘
Bg = ag + 3 (68b)

where cg x -0.525. With the approximation to equation (30a), the
approximate differential equation becomes

Bz'l’ - € az\l( _ 2CS é’ty; =0 ) (69)
Je2 362 1 - cg4e Oe
The singular solutions of this equation are
~3ag -1 1. 1. 969 ]
€ (l - cse) éFl(?S!“s +,§; 5' 43
¥(e,0) = } (0)
Bug(y _ o)1 30 1, .05, 3 9°
6 o) 263/2 21\ T 2% T he

where ag should be chosen to avoid the limiting line in the physical

flow pattern. It should be noted that equation (69) and its equivalent

equatiom of ¢ (not shown here) are one order higher in approximation

than the Tricomi equation. In other words, the Tricomi equation is

equivalent to taking 2z, = O for all values of €. For negative

values of ag, the singularity of ¥ is at ¢ = g;. If ag 1is posi-
s

tive, there are two singularities of V¥, one at € = O and other at
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4 - DIFFERENT APPROXIMATIONS TO CHAPLYGIN'S SECOND

DIFFERENTIAL EQUATION AND THEIR SOLUTIONS

From equations (10a) and (10b),

2 2
.é_g + K a—g =0 (715-)
d¢ o9
2 2
B_g + K a—g - %(mge K)%é =0 (71b)
do d8 . 190
Po 2 2
where K = (:;) (1 - M ) is an implicit function of o. The exact

solutions are difficult to obtain. Chaplygin (reference 1) in his
researches on subsonic gas jets chose X = 1 so that his equations
become Laplace equations. As shown in figure 3 this 1s a reasonable
approximation if the maximum Mach number in the jet is much less then
unity, because K = 1 is actually the asymptote for the true K - o
curve at M = 0. KArmin (reference 7) and Tsien (reference 52) extend
the idea to the linear approximation of the pressure-volume relation
corresponding to the free-stream condition, also obtalning a Laplace
equation and achieving many fruitful results of technical importance.

In the transonic flow, of course, such approximations cannot be applied.
Von Kdérmén (reference 29) in 1947 gave the approximate differential equa-
tions which are valid when the flow velocity is in the neighborhood of
sonic velocity and when the body in the flow is thin. He also found the
transonic similarity law which gives a satisfactory prediction of the
wave drag for thin bodies. In the hodograph plane, the approximate
differential equations are of the Tricomi type. The concept of the
similarity law has been further discussed by Kaplan (reference 39) and
Guderley (reference 31) and extended by Tsien to hypersonic flow. The
main contribution of the transonic similarity law to the hodograph
method is: Instead of investigating the flow about a given thin body,
the flow of a body with the same thickness distribution as the given

one but of vanishing thickness ratio can be investigated. Because of
the vanishing thickness ratio, the boundary conditions can be simplified
in the hodograph plane and are shown to be consistent with the approxi-
mation applied to the differential equations. Under these conditions,
the problem becomes a boundary-value problem of the type studied by
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Tricomi. It is unnecessary to use associated boundary conditions from
the incompressible flow as done by Chaplygin., After the transonic flow
of the body with vanishing thickness ratio is obtained the transonic
similarity law may be applied to find the aerodynamic behavior of the
given thin body.

The success of the above approximation encourages the author to
seek some higher-order approximations. First take a look at the
K - 0 curve shown in figure 3. It has two asymptotes: One is K =1
and the other is o = -0.2513., It is a monotonic increasing function
of o within the range -0.2913< o< ®; at o =0, K=0., It is
understood that o > O corresponds to M<K 1l and o< 0 to M>1.
The main interest of the investigation lies in transonic flow. There-
fore, if possible, the approximation should be s80 chosen as to maintain
the behavior of the exact K - ¢ curve at and near the sonic velocity
(0 = 0) and at the same time preserve the asymptotic behavior of the
exact curve as M —> 0 (0 —> ©) and M — © (o —» -0.2513).

Just as important, the approximation equation should possess solu-
tions within the reach of classical mathematical analysis. With these
few criterions in mind, it can be seen that the Taylor series expansion
of K about o =0 is not a favorable choice, although the first
approximation to be shown below is of this nature.

4,1 - First-Order Approximation in Neighborhood of Sonic Speed

Frankl (reference 11) in 1945 obtained the Tricomi equation from
equations (71) by letting X = Kl = ac and consequently

—+ a0 — =0 (T2a)
dg° 362 - '
2 2
P, g8 _18_, (72b)
362 302 O oo .

*

dX :

where a = [— ~ 9.42 and o = P 1 dq as given in the
ao Jg=0 q Pod

earlier definition. The comparison of the approximation 'il with the
exact value of K is shown in figure 3. From the figure the range of




38 NACA TN 2582

validity of this approximation is very narrow, only in the immediate
neighborhood of the sonic velocity a¥*. The solutions of these equa-
tions have been fully investigated by Tricomi in his famous thesis
(reference 53). Carrier and Ehlers (reference 57) and also Weinstein
(reference 40) have further investigated the singular solutions of

these equations; Tomotika and Tamada (reference 33) also made interesting
contributions to the singular and fundamental solutions. Recently
Guderley (reference 31) made an extensive study of the singular solutions
and showed a very important singular solution corresponding to a family
of airfoils at sonic speed. Guderley and Yoshihara (reference 36) gave
the flow over a wedge airfoil at Mach number 1. They employ an elegant
method of attack in solving the problem.

In the early days, Buler and Darboux obtained the fundemental solu-
tions of the same equation in the pure elliptic and in the pure hyper-
bolic domains as pointed out by Tricomi (reference 53). The importance
of Tricomi's work is the recognition of the differential equation in the
mixed domain, that is, partly elliptic and partly hyperbolic, and the
proof of the existence and uniqueness of the solutions in such a mixed
domain. Following the footsteps of Tricomi, Frankl (reference 11) has
shown the existence and uniqueness of the solution of Chaplygin's second
differential equation in the mixed domain, particularly on two problems,
one being the detached shock wave of a wedge and the other being the
supersonic Jet from an inclined-walled vessel.

4.2 - Second-Order Approximation

From the comparison of the first-order approximation and the exact
curve in figure 3 it is immediately apparent that some improved approxi-
mation should have a wider range of validity than that given by the
linear approximation. The usual technique of taking higher-order terms
in the Taylor series would not be particularly helpful because they
would not improve the asymptotic behavior for large negative values
of K and for large values of o, Therefore, choose

ag

K(o) = KZ(CI) = 17 oo (73)
where a = (EEE) = (gg) =9.42 at o=0 and c¢ can be chosen in
do do

any one of three ways:



6H

NACA TN 2582 39

%K, 3’k
(1) | —=) = {==) at o = 0, favorable for transonic range
do® do?

(2) ¢ =a s0 that ié = K —» 1 exactly as ¢ —> o, favorable
for transonic and subsonic range

(3) ¢ =-1/0.2513 so that K, = K —> -» exactly as o —> -0.2513,
favorable for transonic and supersonic range

It is interesting to note that, in equation (73), ﬁé ——9-%, a

finite value, as o¢—> «, and ié —>® as g ——9-—%. Thus, for any
one of the three choices, K, -always has two desirasble asymptotes.

Therefore, the approximation should be fairly good in the subsonic range
and supersonic range. Of course, if Chaplygin's procedure of using
boundary conditions similar to those for an incompressible flow is
followed, the second choice is a favorable one. Cases (1) and (2) are
shown in the figure. Both seem good in the transonic range. Case (3)
18 not shown. The only known second-order approximation is given by
ILoewner (reference 73). It is also shown in figure 3 for comparison.

With the above approximation equations (7la) and (71b) become

32y . _ao 3%y

80'2 1+ co 892

=0 (Tha)

32¢ + 8o ‘32¢ + 1 6¢

32 1+ coyg2 o(1 + co) do =0 (74p)

Equation (Tha) can be solved as follows:

Assume the variables in V(0,8) separable and let

(n)

¥(5,0) =¥, (oW, o)
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where the positive integer n 1is introduced to characterize the nature
of the solution

c39 + c) (n =0)

wa(n)(e) _
“o(m8)  (a#0)

sin
cos

periodic for any fixed interval of 6. For n # O, ﬂfl(n)(c) satisfies
the equation '

where the positive constant A is so chosen that (nx8) 1is

dz‘l’l(n) _ )\ %ag (n)
d02 "1+ co

=0 (75)

1/2
Introduce a new independent variable =z = znx(%) (O’ + %) Obviously,

in the range -%— € 0 € », the corresponding range for z is 0< 2 € o
Equetion (75) yields

2y (n)
asy (z)
il L LA SR A O R (76)
do® i~ = Lo 2
which is & particular case of the Whittaker equation with m2 = -i% (for
1/2
a reason to be shown later). Here k = éﬂ(&) / > 0.
c\c

Before the choice of the solution is made from the known results
of classical mathematics, a clear understanding of the nature of the
desired solution when o0 — = or when the flow becomes incompressible

is necessary. As 0 —»®, 2 —> o and wl(n)(z) must behave
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+Z :
like e 2 from the limiting case of equation (76). Furthermore
(n) sin nAg
¥ (2) " will be just a single term of the convergent infinite
cos n

series which represents V¥(0,0), to be shown later. The term wl(n)(z)

——

should remain finite when 0 —» ». Therefore, wl(n)(z) ~ e 2 as
0 —» ® 18 necessary.

With the desirable asymptotic behavior of wl(n)(z) at large
values of o 1in mind, the only choice is

Wl(n)(z) .Y,

1 (2)

] [

whose integral representation (see reference 61) is

'%’ . (0o+) 1
W(n)l (Z) = P(k + 1)e 2 (_t)—k—'l(l + %) e-t d-b
k:""é’ 2ni

(17)

where the path of integration is a contour in the complex t-plane .
starting from o Just above the real axis, encircling the origin in

the positive direction (counterclockwise), and returning to the starting
point just below the real axis. In general, for k > O there are two
branch points, one at +t = O and the other at +t = -z, a point on the
negative real axis (since 2z > 0). Thus the path of integration must

be chosen s0 that it will not encircle the branch point + = -z.

The asymptotic expansion for large values of o (not simultaneously
of large values of n) is

oy-ctul oy Bl eodT frer ]

y——

(18)

8= slz
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For the case of large values of n, the asymptotic expansion of

gﬁn)l (z) is much more complicated owing to the fact that both k
y—=

2
and 2z, being proportional to o, become large simultaneously. Very
little information on such expansions is available.

For numerical calculation, the corresponding series solution is
desirable. Jeffreys (reference Tl) condenses early developments of
Whittaker, Goldstein, and Stoneley and puts into compact form the
relation between the Whittaker function and the confluent hypergeometric
function. The following discussion closely parallels his work except
for some changes in notation. For 2m = ip (p is a positive integer),
the Whittaker function can be represented by a combination of Kummer's
series when the limiting value is taken. Thus,

I'(-2m) I'(2m)

W (z) = 1lim () + )
k,+p S l"(%‘.’.. o - k) Mk;m r(%. + m - k) Mk,—m

where

F(ﬁm -k + L4 s) 45

Z 1 ]
Mk (z) = e-§ ztm+§ T (+om + 1) 2
yim 1 E r(zem + 1 + s) 8!

. P(tm -k + §) =

1F1(a,7; z) Dbeing the confluent hypergeometric function.

(a =m - k + %, & = -2m + 1 according to Jeffreys’ notation.)

S S § ‘
W (z) = 1im |e 2 2 2_U(em -k + L -om+ 1 z)
k’ --'-1-1 2n1.__> iu - 2
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where

U(—m -k + %,—&n + 1 z) = I'(-2m) 1Fl(m -k + %,zn + 13 z) +
I‘(—-m -k + l)
2
2m
I'(2m)z F —m-k+i—2m+l;z)
1) 11 2’
l"(m— k + -2-)

He gives the solution of the limiting case 2m-—> *p. For the present
case if m is chosen equal to -% (y = 2 in his notation), there can

be written

Moy ()= €2 2« Up(z)] (792)
where
U (2z) = —E— 271 (79b)
r(1 - x)
Ug(z) S 1F1(1 - k,2,; 2)[log, z- F(1) - F(0) + F(—ki] + Ug (79¢)

r(-x)

The function F({) is called the digamma function and is generally
represented by V¥({ + 1) (reference Th).

7() = Efloge r(t + 1)]
- 1 1 1 1
=n£m;wéogen—§+l—g+2—g+3—...§+n) (80)

(F(0) = Euier constant (-7) = -0.57722.)
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For the present case,
- 8 (L-kK)(2-Xk) ... (s-k [E& 1
Uz(z) = z -
3t ;I‘(-k) si(s + 1)! 2 TTE

r=1

5
1 -1
2 zi; T i 8 + 1

= r(1+s - k) 5 S
DI e W
s=lI‘(—k) (1 - k) r=lr—k £

(k # integer) (81)
Then, the series solution of equation (76) is

¥{o,8) = (clc + Ce)(C36 + Ch) + ZZ: Anwiffl_(z) sin (nls + an) (82)
-]

n=1

where C15 Cos c3, Cys .An, and o, are constants to be determined

from the given boundary conditions or from the boundary conditions
associated with an incompressible flow as in Chaplygin's method, if
necessary. Of course, the convergence of the series must be established

for the particular problem in order to be sure the above representation
is correct.

4,3 - Third-Order Approximation

The X - o relation can be approximated more closely by assuming
an analytic function of o in the range -% < g <o of the form

K =,k3 : ac(l + bo)

(83)
(1 + ccr)2
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such that

i
o

(1) ﬁg =K=0 at o

dK
(2) E—i = %K =a at o=0
o o

It
O

2

d<K
= == at ag

d02 d02

(k) ﬁé(c) also possesses two asymptotes, one of which can be
made to coincide with an exact asymptote of K(o).

The conditions (3) and (4) determine the constants b and c. The

above approximation with ﬁ3 ——+-Eg =1 as 0 -—>» o is shown in fig-

c
ure 13. It checks very well with the exact value of K for the range
from subsonic through transonic up to supersonic regimes. The other
asymptote, ¢ = -0.2583 as K3 = ~w, does not differ greatly from

o = -0.2513 for the exact value of X. There is another important
advantage of this choice, because the boundery conditions of incompres-
8ible flows can be borrowed as in the Chaplygin procedure.

Introducing equation (83) into equations (T7la) and (71b),

3%y N ac(l + bo) %Y -0

(8ka)
dc% (1 + co)? 82
and -
82;?5 . ac(l + bo) _BEQ _ (b -clo+1 dF _ o (81b)

= (1 + co)® 362 o(l + bo)(1l + co) Ao -

To solve equation (8ka), assume that the varisbles are separable and

w(n) (n) (n)

(0’,9) = \lfl (0')“{2 (9)
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where the superscript (n) is used to show each solution is related
to n, a positive integer,

S0 () (n#0)
™ (e) =
c30 + ¢y (n = 0)

and ¢1(n)(0) satisfies

dewl(n) _ nexeao(l + bo) v (n) _ 0
dg® (1 + co)? 1

(85)

(86)

With the introduction of a new independent variable 2z = 2nA !%E(l + co),
c

equation (86) can be transformed to the well-known Whittaker equation

1 2
e ) @,
do2 SRR
where
k=-nST22 0 (c > 2b)
2c2 b
(imaginary if nA%a(c - b) >
m=\';_n21.2a(c—b) €
4 cH 2.2
n“A“a(c - ) _ 1
(real if M < E)

C

(87)

(88a)

(88p)
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The fundamental system of solutions of equation (86) is

cnw](jzl (z) + DnW_(_]I:zm (-z) (n £ 0)
™) - (89)
c10 + Cp (n =0)

vhere Cn and D, are constants to be determined.

The Whittaker functions can be expressed in terms of the confluent
hypergeometric functions and Kummer's functions if m ;4 i-:éL- as follows:

(n) r(-2m (n) I'(2m) (n)
e m (z) = I‘(—m . i _l_) M m (2) + P(m — l) M () (908)
2 2
and
W (-2) = 2 () (g Ty
I'(—m+k+§) I‘(m—k+§) ‘
(Javat-2)] <2 «) (90b)

where the Kummer's series are

Z 1 1
), (o B ey gl d o)
-2 ;l_'m+.]_-
=e§z 21Fl(i‘m—k+%,i'2m+l;z)
Z 4yl om ) °°I'(+m+k+l+s)‘ s
M(E)m (-z) =e2 2z 2 I(t2m + 1) § . z (-z)
e l"(tm +'k+%) 5=T I(t2m + 1 + s) s!

1
= e z 21Fl(i‘m+k+-§-,:':2m+ 1; -z)




Besides, the integral solutions are much more general, and the Whittaker functions can be defined
uniquely whether or not m = t—.

.2 O+) moko L o1
Wzgcn (z) = - 5 P(m k4 'l-)e S (-t) 2 (l * E)m 2 ot at (91a)
s nl -4
(n) 1\ = (0+) ik - & n-k - =
W_]ni,m ("'Z) = - 'E—i"j—_' P(—Iﬂ. -k + E)e-g (-Z)'k‘ (-t) 2 (]_ - %) 2z e-‘b at . (9lb)

o

In the present case z 18 real and positive and the contours are so chosen that the second
branch point + = -z 18 excluded. TFor more details consult reference 61,

Now the question arises whether both or only one of the two Whittaker functions exists in
the present solution. This cen be determined from considering the incompressible flow as the

limiting case a8 o —» « (M — 0). Furthermore, #l(n)(z) zig iﬁ is Just the nth term of

the convergent serles solution, In other worde ‘i’l(n)(z) must be finite a8 0 — =. Now,
from equations (9la) and (91b), the asymptotic expensions for large values of o are

W) (o) LB 1+i[m2_ ﬁj[ - k"éz] "E“Q‘(k‘“;%ﬂ
k,m o s!z8

(92a)

end

W-{-E)m(-' %(-—z)'k l+iEﬂ_ k+§ﬂ[ —k+§2] ,.Ene_(k+s-%)2]

E=1 5!(-z)®

(92b)

2g6e NI VOVH
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Equation (92a) gives an exponentially demping function of z and equa-
tlon (92b) is an exponentially increasing function of 2z which is
divergent a8 ¢ —>»w. Therefore, the only choice is D, = 0. Thus,"-

there can be written

¥(0,8) = (clcr + c2)( 30 + ch + i [ (n) (z) cos ni\ +
n=1

= o(n)
N (z) sin nAo (93)
where s 2, 3, Cys Kn’ in’ and A are determined from the

given boundary conditions or from the boundary conditions of incompres-
sible flow, if necessary. If A.!1 cos o, and Bn sin o, are introduced‘,

there can be written

¥(o,8) = (clc + c2)(039 + CLL) + i Anwglr)n (z) sin (n)..@ + C’-n,) (94)
n=1

It is interesting to note that, when m 1—5, equation (87) reduces to
equation (76). Thus the second-order approximation is just one par-
ticular case of the third-order approximation with .b = c¢. Of course,
vwhen the choice is made thet b = ¢ = 0, both cases reduce to the first-
order approximation, equation (T72a).

Along this line of thought, if there is imposed k = O or 2b =
equation (82) becomes

5 ao’(l + ’% cr)- (o5)

(1 + 00)2

The differential equation becomes the normal form of the Bessel equation

1 2
d2¢i(n) E - m

+ {-=+

d22 l" 22 Il!l(n) - © (96)




50 NACA TN 2582

where
z = o/2 mg(% + o) (972)
I n°)\la
m I 203 (97b)

Its solution can be written as

1) =0 (2) = | sec maig ™) )

where K,(™) (g) is the modified Bessel function of the second kind with

complex order m. The function Kﬁ‘n)(é) and no others satisfy the

requirement of boundedness in value as o0 —> o, This can be shown
by the asymptotic expansion

2 2 2
2| e - @67 [ -y
Km(n) 2 ~ .i e 2 1 + 2 2 2
2 Tz 8
s=1 slz
(98)
There is another interesting feature of this approximation if the
following conditions are chosen: a = %E at ¢ —> 0 and c¢ such that
o
c = % or K—>1 as o —» ., Then,
ac(l + % o)
K= ———15 (99)

2
a
(1 + > o)
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and
z = nk(% + o) ‘ (100a)
1 @2
m= ||= -~ 100D
P - (1000)

The advantage of this 1s that the boundary conditions can still be
brought from the incompressible flow.

The accuracy and usefulness of this third-order approximation is
discussed in the last section of the paper.

5 - HYPOTHETICAL GAS ILAW CORRESPONDING TO APPROXTMATIONS

OF CHAPLYGIN'S SECOND EQUATION

In equation (7ia), if V¥ = Ilfl( 0)¥o(6) is introduced, the principle
of separation of variables yields:

dewl 2,2
- ne\ K(o)wl =0 (101)
d02
where
2 1 -

p MqT

K:.L(l - M2) e 1 (102)
p2 (1-7)H

o = -0.2513 - (1 - T)l/EE -1 ;T + (1 ; T)E:I + tanh™t (1 - 'r)l/2

(103)

1
—_— I e e—— O)_l_
--£1 (104)
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Since KX(o) is an implicit function of o, some approximations of
different orders have been made in the preceding section to obtain
useful solutions of V7. It is natural to ask what kind of hypo-

thetical gas laws will correspond to the different approximations.

It is understood that o 1s just another way of expressing the
velocity magnitude; consequently it is defined once and for all time
by the exact gas behavior as shown in equation (103). The variable o
is independent of the hypothetical gas law for each approximation
shown in the preceding section. The problem now is to find the func-
tional relations of p and p/pO in terms of o as the independent

variable. First of all, by definition,

dp _ (.42
5—(&) (105)

and the differential form of Bernoulli's equation gives

d;
L - _pq
dq
If equation (104) is rewritten
2 . 2 (i ¢ (106)
pp do €
it can easily be shown that
M2 = E_(ﬂ.) (107)
do Po

Consequently, if M2 is expressed in terms of q’l and its derivatives
with respect to o, equations (106) and (107) yield

q-1 —J—de c )
M2 =1 - __fﬁz_ (108a)
=

do
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On the other hand, equations (102) and (106) give an alternste expres-
sion for M2 in terms of q‘l and its derivatives

Po

M2 =1 - (-‘?—)QK(G) =1- E"E(loge q-l):l k(o) (108b)

Equating the above two equations, a differential equation is
obtained of g~1 with respect to o,

dz(q-l) -1 _ -
5L - kol -0 (109)

vhich is the same equation as equation (101), if g1 is placed for V¥
and nA 1is set equal to 1. If the solutions of equation (10l) are
known, the solutions of g can similarly be obtained explicitly in
terms of o.

If now the solution of equation (109) is substituted into equa—~
tion (106), the density ratio is obtained as a function of o. Dif-
ferentiating this expression with respect to o as given in
equation (107), the Mach number is obtained in terms of o. The
derivatives above involve only differentiation but p(o) has to be
obtained by the integration

P = fpoq2 do (110)

Of course, if equation (109) can be solved exactly, the relations
of p/po and p with respect to o will coincide with those already

obtained from the exact gas law.

Now, introduce different orders of approximation to K(o) in order
to solve equation (109). Then, obtain the corresponding approximate

solution of g¢~1 in terms of ¢ called G (o). With the term Y 1(o),
p(d)/pO can be obtained from equation (104) and p(o) from equa-

tion (110). Then, the approximations can be compared with the exact
values, both in terms of o.
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In the preceding section, the best approximation to K(o) is the
third approximation

~ ac(1l + bo)
Ky = —— — (111)
3 (1 + co)@

where a, b, and c¢ are constants already chosen according to certain
considerations. Substituting into equetion (109), there results the

differential equation of Efl corresponding to the approximation
of q.—l}

dz('d"l) _ad(1 + bo) (~

251 =0 (122)
dg? (1 + co)
The proper choice of the solution is
N_l _
¥t -m (2) + P (2) (113)
where
~
2\jab
zZ = (L+co)>0
c2
c - 2b
k =~ —\F< 0 > (11%)
202 b
1 a(c - b)
m = ,|= - >0
Jll- clt
-

The terms Mk,m(z) and Mk -;m( z) are Kummer's confluent hypergeometric
J

series (reference 61) as shown in equations (90a) and (90b) and E
and F are arbitrary constants to be determined from the following
boundary conditions:
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(a) At o

(b) At ©

]
O
-

P4 /5-0

In addition, q ! must go to ® @8 0 —> « (M ~ q = O).

The above are the correct boundary conditions because it is
intended to choose the hypothetical gas law to agree with the exact
one at sonic velocity (o = 0) to the highest possible order of approxi-
mation and to preserve the asymptotic behavior as ¢ — «,

If there is introduced z = Zg = qug- af‘ g =0,
c
1 B 1
E = Z (115
0%z W(Zo) oMk -m( ) ( ) c Mk,:—m( 0):| )

' a*zoi(zo) K7 1) 2 (o) - Zol“ﬁl,m(zoﬂ (116)

vhere W(zo) = Mk,m(ZO)Mi,—m(zé) - Mk,-m(ZO)Mi,m(zo) is the Wronskian.
From equation (104), the approximate density ratio is

% 1 Erg,m(z) + My _n(z)
5. : SRR (127)
P Zo¢ EMk,m(z) * FMk,—m(z)

which is plotted in figure 14. It differs very little from the exact
curve, From equations (108a) and (108b), the approximate Mach number is

' | ‘ﬁ L |2, )+ g, (z)][ nl2) + P ()]

B - ()

(118)
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which is shown to compare reasonably well with the exact curve in
figure 15.

The values of = (E*)z and p against o can be calculated

g8

from

(@ -

RBIN

[EM;{’m(z) * FMJ;,-m(zazEEM;’m(z) + IM;’_m(ZEI -1
] [EMk’m(z) + FMk,-m(ZZ' {[:EH];’m(z) + FM-‘:{’_m(ZZI - [EHk’m(z) + mk,-m(z)]} (119)

and

o
!

f poﬁz do

(120)

= Po b/ﬁ A dz
€24 E:Mk,m(z) + FMk,_m(zZ.l 2

Since the hypothetical gas law differs so little from the exact
value, it seems justifiable to use the exact gas law to replace the
hypothetical gas law if necessary, particularly in the neighborhood -
of the sonic velocity.

To the author's knowledge, the only available high-order approxi-
mation is Loewners' approximation (reference 73). It is the basis of
Cerrier and Ehlers' investigation on channel flow (reference 32). For
comparison, his approximetion in ges behavior is given in figures 14
and 15. His approximation is correct at the sonic velocity to the

second derivative of the K - o curve.

For the present second approximation b =c¢c or m = —~%§ is

chosen. When 2m is an integer only one of the series solutions is
valid, nemely, Mk’_m(z). If the solution Mk,_m(z) is retained then

the second independent solution can be obtained by using the limiting
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value of Mk,_m(z) as m —a- %r It is quite similar to the develop-
ment of the preceding section. No further details are necessary.

For the case '2b = ¢, k = 0., Similar solutions can be obtained
with slightly different boundary conditions.

6 - TRANSFORMATION BETWEEN HODOGRAPH PLANE AND PHYSICAL PLANE

P
With the introduction of do = -—2 a9 the differential equations

p g
for ¥ and @ from equations (10) and (16) become

ég = ﬂ a

30 Ko) 36 (1212)
i =_-—§'1’- (121p)
%6 96

Po\2 :
vhere K(o) = (?o) (l - Me). As shown before, the differential equation
in ¢ 1s

. .
oV, K(o) A 0 (122)
30° 962

with the exact value of K(o) approximated by

ac(l + bo)

'E()=
310 (1 + co)?

Introducing ¥(0,6) = ¥;(o)¥,(8),

2
9% -'n2>,2“fc(o)¢l =0 (123)
do .
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where n 1is an integer and A is positive and real; A is introduced
here in order to make Vo(nA) =¥yo(nAd + 2x) periodic. For simplicity

A 1 is chosen 1n the later treatment. With the introduction of

Z

22 {8B(1 + co) (ot to be confused with Z to be introduced

c
presently), the general solution of equation (122) has been found to

be

¥(0,0) = Ao(a + UO)(G + 90) + EE::.Aﬁwﬁgi (2z) cos né +

n=1
Z‘” (n)
n
BoWy n (2) sin né (12%)
n=1 )
where AO, An, Bn’ 0y and 90 are to be evaluated from the given

boundary conditions for a particular problem at hand, or from the
solution of the corresponding incompressible flow. The superscript (n)
is applied to the Whitteker's function in order to show its relation
to n. BSuppose that all these constants are known and the right-hand
side of equation (124) is assumed convergent and represents V(0,6);

it remains to transform the results obtained in the hodograph plane to
the physical plane so that the problem is solved in the physical plane.
The procedure of carrying-out such a transformastion is glven here.

First introduce q and 6, the inclination of the velocity
vector, as ‘

u=4qcos 8 .
v =g sin 6
p p
where u = éﬁ = —9-92 is the local velocity component along the X-axis
OX P oY
and v = g% = - 29—%% is the local velocity component along the Y-axis.
o]

Then the total differentials of @, V¥ are
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ag = 3 ax + of ay
oX oY

= g(cos 6 dX + sin 6 dY) (125a)

av = o ax + il dy

oxX oY
= ‘% g(-sin 6 dX + cos 6 4Y) (125p)
Or, in short,
iz = %(dﬁf + 1-%° d\lr) (125¢)

where Z = X + 1Y 1is a complex variable in the physical plane., With
g, 6 as independent varisbles in the physical plene,

- 3
ag S 4o + <& ae (1262)
ay = o da + oY de (126b)

o o0

The’ derivatives of ¢ can be eliminated entirely 1f the relations
glven in equations (12la) and (121b) are introduced in equation (126a)

- N o - W g
ag = K(o) Y do S a (127)
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Substituting equations (126b) and (127) into equation (125¢),
equation (125c) can be rewritten as the exact differential

dz=%dor+-a—z-d6

oo o6

Jol2] oo oo b 36
or
3z _ Mgy 3, if&éﬁ:l (128b)
do q Jolé] p oo
6
QZ_=31_(_E+1°_°§‘£) (128¢)
ba 2] g do p 38

The above relations are conformal and uniquely exist as long as the
Jacobian determinate

é&EiZl # 0 or o (129)
d(o,0)
In the case of A%, Y) =0 at (X,Y) some singularity may occur in
9(0,9)
the physical plane. IT Ezg:—"-Q-= » some singularity may occur in the

3(a,6)
hodograph plane as shown in reference L48.

Before carrying out the calculation, a few symbols are introduced
to make the presentation a little clearer. Let

-
v = (o + o) + 6,)
1lrc(n) = Wﬁ?& (z) cos n8 = W(n) cos nb > (130)

w]({?r)n (z) sin né ]

Ws(n)
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Also represent Z = z(0) corresponding to ¥(0) ang z = z(n) 4
w(n)(z). For future use, rewrite equation (106) as

a Po

.—q'. = -q — (1318.)
do p
1dp _Po, o
-_—_—= — M 131b
5% -5 (131p)

and
d(Po) K '
@(’5&) "3 (131c)

To carry out the evaluation of Z 1in terms of o and 6 1is
rather too long for the space availeble in this report. The basic
method of calculation is rather simple. Since in equation (128a)

dz = oz do + éE d0 is an exact differential, éE (or ég) can be
Ry 08 ) Jo.

integrated to obtain Z except for an unknown function F(o) (or
F(0)) to be determined. The unknown function F(o) (or F(8)) can

be evaluated from the remaining relation 9z (or %Z). Of course, in
o} e

the operation, repeated use has been made of the differential equation
a WQ(U)

T ac®
the following section mey be consulted.

n2KW2(0) = 0 or Whittaker's equation. For further details

n = 0,~ In this case,

o)

2(0) = x(0) | 43(0)

% I—Bg(c + cr) - 1:| - i.(G + 60) + Zo(o) ‘ (132)

where Z,(%) = x,(°) + 1v (0) 15 tne constant of integration.
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n=1.- For n=1, the function F(1)(g) 1is en integral as

(1)
r(U (o) = 4 JE% Q’dT - %w(l):l dq (133)

The term Zc(l) can be expressed by

~—

Zc(l) - Zco(l) = }ih.:e @22 + p?o W(l)] - il}lﬂ _Po w(lﬂ +
o

and

lfll}_o anll) KW(l):I do (134p)
2 Jalp do .

vhere Zo (1) ana 2 (1) are the integration constents.

n # 1 or 0.- For the cases n # 1 or 0, the function F(n)(cr) is
found to be a constant

(n) _ (n) _ jel(n+l)e (—W(n) npg (nﬂ i
% Zeo 2(n + 1)q|_ do * p ¥

1e-1(2-1)6[gyy(n) o, w(n>] (1358)

2(n - 1)q L do p
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(n) el(n+1)e Ew(n) npg (n)—

(
Z - Z = + W +
8 Bo 2(n + 1)q|_ do p J

o~1(n-1)6[gy(n)  mp, w(n;-

2(n - 1)q|_ do P

From the earlier definition,

7 = AOZ(O) + AiZ + Blzs ZE:: [;nz + B Zg :] ‘(136a)

and the constant term is

7, = 8,Z,(0) + 8z, (1 + 37, (1) j{; [E;zco(n) + BnZSo(HE] (136b)

Substituting equations (132), (13ka), (13hb), (135a), and
(135b) into the above equation,

Aet® iA+ + By)e2if]. (1)
Z~ 25 = q[%Q(U+oo)—l-i(9+eo)]+(lhql) Ewdcr+

%? W(li] (Ay + 131)elgw(1) fo W(li] .

2q [ ae o

iA1 + B P (1)
v [t o],
2 ale do

Z (j_An Bn)ei(n+l)6 I_W(n) np, W(nil .
2(n + 1)q I__ do p

n=2

(-1ag + Bn)e’i(n l)Gl_w(n) np, (n)]}

2(n - 1)q [_ do p

(137a)

(135b) . -*
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In more detail, the expression is

i 216/ ., (1)
zZ -7, = Ao_el__EQ(c fog)-1- 10+ 90)] , lidy +l:;1)e ym (2) |

q | do
] ]
( ) '_Wk (z)| +

o 2q dc P mo

iA; + B (1)
.______.l; 1 f%i[ K(U)V(l) (z)| do +

I~ i(n+1)6|..(n)
S (14, + Bg)e Bhem (2) o W (|
=2 2(n + l)q do P

-iA_ + e—i(n-l)e dW(n& n
(140« 20) wn () 20 o) () (137)

2(n - 1)g do )

2n
where =z = ;—2- \lab(l + co).

The above result is also true for the cases of the second approxi-

mation b = ¢ (m = - —é—), or of the approximetion b = 2¢ (k =

T - FLOW OF COMPRESSIBLE FLUID THROUGH AN APERTURE OF A TWO-
DIMENSIONAT, INCLINED-WALLED, STRAIGHT-EDGED NOZZIE
To apply a critical test to the present investigation it seems
reasonable to compare the present approximation with a well-known flow

pattern which has been studied by early explorers using the exact method.
For instance, Chaplygin gave an application of his investigation to the
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efflux of a gas from an infinite vessel. Later Lighthill, following his
approach, repeated the example. Both considered the particular case
with the walls normal to the jet and both brought the boundary condi-
tions from the incompressible flow and treated the maximm Jet velocity
up to the sound velocity.

The present application gives a more general type of such flow -
flow through an aperture of an inclined-walled, straight-edged nozzle.
Besides, the problem is treated directly as & boundary-value. problem.

The question of the maximmm velocity in the jet depends on the
value of the ratio of the pressure p  surrounding the jet to the stag-
7

Poo y+1) 771
nation pressure p, 1in the vessel. As long as > 2 5 , the
o]
maximum velocity can never exceed the sound velocity. The boundary
value of the stream function V¥ 18 clearly defined; therefore it is a
7
)

b, vy + 1
direct boundary-value problem. For the case — < {~5— the

D, 2
velocity of the Jet will be supersonic and this problem is &as yet
unsolved.

The approximate differential equation used is (given in equa-
tion (8ka))

3% , as(1 + bo) F¥ _
o2 (1 + co)® 02

(138)
and its general solution has been found to be

= ' (n)

¥o,8) = (clo + cz)(c39 + Ch) + }Z:j(ﬁﬁ cos nA@ + ﬁﬁ sin nAG)Wkﬂn (z)
n=1 ot
= (clc + c2)(°39 + Ch) + }fj.Anwﬁ?i (z) sin (nxe + an) (139)

n=1
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B

) and A are constants; A, sin a, = Eﬁ

wWhere €15 Cp» €35 Chs An,

and Ay cos ap = By are obvious; z = ggﬁ wgg(l + co) 2 0,
c

2
k=M\,§<O, and m = \&- (n1)%a(c —b); and n 1is a posi-
2c2 b ch
tive integer. It represents the required solution if the series
converges. .
The constants

c 'ch, A, a,and ) are determined

€10 G20 3 n
from the boundary conditions which are shown as follows.

6o &arbitrary.- The flow in the physical plane is shown in fig-

ure 16(a) and in the hodograph planes in figures 16(b) and 16(c). Since
it is known that the discharge Q <from the aperture is finite, ‘the
stream function V¥ is bounded. Moreover, the flow is symmetrical with
respect to the center line., If the rate of total discharge is introduced
as Q, then for inside the vessel there can be written

-

-_9 -
¥ =-% at 6 =6,

(140)

<
]
o
&
4o}
]
o
Y

¥ = % at 8 = -64

Thus it is obvious that V 1is an odd function of 6. Corresponding to
a constant p,, q and O on the outer surface of the jet are constant

from consideration of Bernoulli's equation. Thus = —-g- at

0 = 0, = Constant T

and - L (141)

0 <656,
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First of all, since ¥ =0 at 6 =0,

(142)

Thus equation (139) becomes

¥(0,8) = (clc + c2) c38 + iAnW}(sI,lr)n (z) sin nX8 (143)

n=1

which is an odd function of 6 as required. DNext, the stream function

is defined in the interval ~60 <6< 60 or the period 260. Thus

(vhen n 1is an integer) sin nk(e + 290) = sin nA@ or 2n\d, = 2nr.
A= 5"—- (14%4)

Substituting equation (14L4) into equation (143),
(n) ‘
¥(o,0) = (clc + c2 cg6 +Z AWy o (2) 53 6 (1k5)

Now, since V¥ is bounded everywhere, particularly when 0 —> »
or M—» 0, c; must be equal to O. Thus equation (145) yields

¥(0,6) = A8 + Z— AnW(n) (z) sin 2% 6 (146)

n=1 °




68 . NACA TN 2532

At 0 =6, ¢=-%,
.--g- = 4.6, T
i (147)
___9 :
fo = 26,
Thus
#0,0) = - Z agi{®) (z) sin = (148)

Finally the constants A, can be determined from the boundary condi-

_ 9 _ _ _ 2nx
tion ¥=-2% st o=0o or 2= 0= i ab(1 + co,) for 0 <6 56,
Lod
_.8__495°8 Z o) ns@
W—--z——-'ae—'+ _ AIl (Zo) sine— (1)49)

o n:

L o)
or

00

4 2) Y ekt

n=1 %

Now the left-hand side of the equation is a known function 6/90 and the

right-hand side is the Fourier series of -gt(l - Gi) 1f the series con-

o]
*verges. It is easy to determine the coefficient as

) (e | Y- &) ern (ne ) of2)

-1

= - % (150)
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or

Substituting into equation (148),

w_.(n)
W (z)
¥(c,0) = - g-eﬁ- + QZ ——]%1—— sin (n:r —:—) (151)
°© T4 oWem %o °

First, it is necessary to show that equation (151) is valid for an
incompressible flow which can be considered as the limiting case of
a¥ —» ©. From the definition,

there results, for incompresgible flow,

5*
o lim o = 1lim log, T (152)

a¥—30 a¥—>w

and, from the definition of 2z for very large values of g,
&b _ 1)

(o]

since

z=@(l+c0)
C

ZDXOE - O(or-lﬂ

From equation (87) the asymptotic expansion of W]gl)lgl (z) for large
values of o 1is .
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wl(i?i(z)— —;-zkl+0(ﬂ

e'nw(znkc)kE . o(%):l

Then the ratio of the two Whittaker functions in equation (151) at very
large values of ¢ is

w(n) (z) _ e-nx(a-co)A(%)kE . o(%)] (153)

w(n) (z0)

Now, for an incompressible flow with equation (152),

e o lim (10 8% _ 10g 2o >
i~ Oo; T 21 = e
i a*=ao* oo € q do

*
= 1lim ) (éOEe & . loge 3
a*=a ¥—w 8o do
q
= -log, —
€ 9

and

log, a* ~ loge q

s =
%04 a*=ao* yoo O a¥*=a,¥—o loge ag loge do
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Introducing the above results into equation (153),

wl(:f‘% (z) | tin wf{fﬂl (z) <q>nx _ <q>%
Wﬁ?% (zo) . a*=ao*——9a>W£i; (Zo) 9 40

Thus the stream function for the incompressible flow is

® an
by =-22. 8% 2a)o gy (o 0 (154)
26 = =7 2\% 10

which reduces to Chaplygin's case if 6, 18 set equal to ﬂ/2.

The convergence of the series is easily proved, because

(n)

W (z)
_%Q%L___-g 1 for z2 zy and Wﬁ?& (z) > 0 1is a monotonically
n .
Wk’m (Zo)
decreasing function of 2z in the subsonic range (see appendix B).
Compare the nth term of equation (151) with % sin nx gL vhich is a

o
term of a convergent series, and each corresponding term is smaller.
Therefore, equation (151) is convergent.

The main interest of this problem has been the minimum width of
the jet which occurs at X ==, Therefore the solution must be trans-
formed back to the physical plane.

With the differential relation from equations (1la) and (1b), the
following equations can be derived:

3 ol
S% XS
L (155)

o _ _ ¥
6 oo
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and, rewriting equation (128a),

=4dX + 1 4dY

v . 4 Poov o¥ Po o¥
_[(K i > ac)d + (-'B_E i . ae) ] (156)

Differentiating equetion (151) with respect to o and 6 and remem-

bering 3zg = dc ?ng \Ia_b = gﬂ (since -\'Ej = 1)
; o
W Wa
do oz do
2 '(n)
=g. Z_ 2n Wk’g (=) sin (n:t _9_)
6
"5 % W) (=) °
Ly w9 sin (E_ﬂ.‘i) (157a)
(o] n—l W(n) A 60
k,m ( 0)
L o IO
_ 9 .9 m nsy
- .a_e. = + 5 cos (157b)
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Substituting the above equations into equation (156),

-7 = — LK —-|=

w0 o ()

-l == sin +

1pQ 1,
POy 2
L

13

(158)

which is the conformal relation of any elementary length in the hodo-
graph plane to the corresponding element in the physical plane as long

as the Jacoblan determinate M # 0, This condition is automatically

d(0,6)

fulfilled in the subsonic region up to sonic velocity as has been shown

by Tsien (reference 45) and Craggs (reference 48). Since

exact differential, there can be introduced,

(n)
2z _ e Jah S
d 6, |2 0
7 2 [ 1 W(?; (o) 0

dZ is an

(1592)
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and
J0 0, 4= (n) 9
] o n=1 wk’m (Zo) o
B (n)
ip Q (z)
pgo .é-+ cos 22 (159b)
° L lwkm (zo) °

The value of Z can be determined by Integrating

tion of o +to be determined, and, consequently,

—BE, leaving a func-

0

1 ox ot o = on o]
Qel6 2, (n) (z) |5, cos 5, 6 - i sin 5 ]
-7 = -+
6,a ( ) 2
o n=T w4 (2, ) (gg) -1
(n) n nx nx |, |
i —sin — 6 - cos — 0
Qogel® Zwk o (2) 178 S o |, Qo elf s Eo)
2] n 2
oPd ( ) (z ) (EE) _1 20,Pq
% ]

where F(o) 1is to be determined.
equation (160)

(160)

This can be done by differentiating

22 _ qet® Z %0 [zwk(n) (z) - KHL2) (z):l
"d6 6, &1 [nm\2 :lw(n) (=
90) k,m o)
in B0 "
ieQeie 25 -60( ) -2ZO'Wk_Em) (Z) _
of n-I K%) - ]Wk?m (%0)
2 po . 1(n) (n) Qel :
2 gf) - :}jf'wk,; (z) + gz Kwk?ﬁ (z) o ezoq K+ F'(0)
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where zg4 = ?—mt-—, and equations (131la) and (131b) are used. Equating
o .
equations (159a) and (161),

o0

F(q) = Qeie cos -——- "(n) (z) - B fzre ka,m (z) _r
R ' w]i

2 (2)

Goq - ) ]
I

nst

1qelf 5o © sin 2~ — [: 2wu(n) (2) -
( ) (2.) °

eoq n=1 K_]?-_E)a n
90

2 ' R
= 22 ml({fll (Z):l -0 (162)

o

The expressions in the brackets of the right-hand side of equation (162)
are identically equal to the differentidl equation, equation (T78) if

_ norZ
2

8o

and consequently are zero as shown,

Thus, choose

— F(c) Constant = Zj (163)

—

Now equation (160) can be rewritten in a more suitable form

_PR ] e, i 2 £ wk(i) (z) + WI({DI),I (2) ei(¥+l)e .
~ 20054 L o (z,) pz , 1
6O

2 %WLSE) (2) - wl({f‘gl (z) e'i(gf'l)e

T Wl(cngl (%) -1

(16ke)
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Specifically,
w |2 LW (n) (z) + W(n) (z) cos (nﬂ + ])9
-poQ Py 'k,m k,m N
X = cos 8 + Z +
2p6,a n=1 wl(:jr)u (20) g-g- +1
o ° W (n) (z) - (n) (z) cos (2E - 1)6
(n) r(lio i (164m)
W (ZO) -e—o -1
m o ' (n) (n) nx
y = 208 sin9+Z2ka = Ten )7 (9°+l)6_
epeoq n=1 (n) (Z ) gg + 1
(o]
'(n) (n)
2 -- w (z) - W (2) sin 1}6
o (n) Eio ) (16k4c)
Ve om (%) .

o

The convergence of the above two series must be established. First, at
0 =0, Or z = z,, equation (164b) does not converge for 6 = O, because

the velocity vector of gq=q_ at 6 =0 1is located at X =

o0

At very large values of n,

z = é;—l- ab(1 + cco) = -2%)"-(1 + cao) (since —‘J:——b- = l)

[+

A R
. =ﬁ_ nzlaaiz -b) _ % e E+ o(%)] - _izi(g - 1)1/2E+ 0(5_‘ r(lss)
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(n)

With the above notations the asymptotic expansion of Wie m (z) for
large values of n can be introduced as follows:

) ﬁﬁﬁ Eﬁ‘l& . Iﬁl)]mE + of2)

(166)

at sonic velocity (o = 0). TFor the subsonic velocity (o > 0), a similar

expression should be given; the case ¢ = 0 is more critical. Further-
more from reference 61, page 352, example 3,

W@y [P 3, @

----- (167)
Wl({1,1]31 (Z) Z 2 Z (n) (Z)

-t
R~
nE
~
|
o
:\l"'
—
G2
—~
TR
+
N

Now it is necessary to show that, for large values of n, the value of
'(n)

—’—-(——)- does not depend on n to the first order. Substituting
(1:1) (z)

equation (166) into equation (167),

TIRN X L S pa
@)u) : i e+ 3- =) i
=k - %+ (m + 'E)e")"ﬁE+ O(%)] (168)

vhich is a constant independent of 1/n to the first order for large
values of n, Therefore the coefficients involving Whittaker's function
for large values of n can be written as

2p Wk(m) (Zo) L2l 1, (f+E -llﬁ:l ‘1

- = m+ ke (169a)
b
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' (n)
W Zg) .
2 %E)E——g-—z— 1~ ip k - §-+ (m + k)e"l'm:l (169b)
Po Wy (%0) °
both of which are bounded. For the case 6, =%, X , ., ., 2 (s 1is
(o] 2 3 J s

an integer) the series in equation (164c) is convergent. This can be

shown at the surface of the jet. The equation

(n)
5P, l; ,m ZO) sin (sn + 1)6
2“pqmsin9+ (n) +1 sn + 1 -
[ n=l L k’m 0)

w ’(n)
Po Ye,m (zo) sin (sn - 1)6
1 (170)

3
ES

8p,Q = gin n|o| =~ sin nlo|
is dominated by —I1 + E —-—-——+FE ——————], where E
Eﬁpmqm n=1 o n=1 o

and F are positive numbers such that E 2 |2 —=

' n
2 — —2—— - 1} for all large values of n,
o W(n) ( )
o]

r
iy,

Actually fewer terms occur in equation (170) than in the dominate

o0

sin nj8] x |6]

series —5— =35 - 5~ Therefore equations (170) and conse-
n=1

quently equation (16kc) are convergent for o =0.

convergence for o > 0O can be shown.

Similarly, the
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0o = =.- This is the case which has been treated by Chaplygin and

noja

Lighthill. The condition 6 = 8y occurs at the mouth of the aperture.
Let h/2 be the half width of the mouth. Then,

iy
=3
'(n)
-] p W
T e o
T[pmqm n= o k,m ( O)
(-1)2 (-1)m
- 2n+1 - —2n-1
o ’(n)
Pl (-1)%n Poic,m (20)
= 1+8
wu| oy WP - 1 o) ()
= (-l)n'—l e (_l)n-l .
n=22n"l+n—Z-J:2n’l ()

If, at X = ®, the width of the jet is h_, then, by definition,

Q = Pats h, (172)
Po

Substituting this value into equation (171),

= (-1)%n Py ]'i(:l) (ZO) = (__l)n-l 2 (_1)n—1
SZ = = Z———-—+Z.___

=2h 4
* n=1l"n'lpow(n)(z) -l G 2m- 1

b
he

(173)
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Meking use of the result of the well-known Leibniz series
o0

(_l)n—l _x

= & equation (173) can be written
g en-1  k

o 7=1 Un® - 1 w(n) o) w\k n

16 0\ (-1)"n W}L(E) (20) +\2(n' ) 1) . 2(1)

+£1~ = ()% Ve (%)

P M L) (=)
2

|
[

(174)

Just as a check for the case of incompressible flow, the limiting case
of a¥ —»® or ¢ —» « may be considered.

First, considering equation (167) as o Dbecomes very large and n
1s finite,

W'(n) (z2) m2 _ ( _ _:_]2-_)2 %zk
7K

w](g ) (z)

=|—E_%-ﬁ2+(‘-§;ﬂ ” (175)

The above equation tends to —% when o —»> o, owing to the fact that

kK and T both become zero as 0 —>w (Z —>w). Substituting the
above equation into equation (1T7k),
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[22]
h 8 (-1)1
-ttty >
0 n=1 1#n - 1
n-1 n'-1
=1 + g ("l) + _% -~ (-1) + 1
Tt on - 1 7 on' - 1
n= n'=1
=1+ 2 (1762)
b1 .
Or, inversely,
Bo  _m _ 0.6110 (176Db)
h 2+ x ’

which checks with the well-known result of Kirchoff.

For the case o, =0 (M_=1) the width ratio h_[h has been

calculated from equation (1T4). It is found to be 0.T46 by summing
terms up to n = 10. It is expected that the error is of the
order -0.002. Consequently, it checks reasonably well with the Iighthill

result Chwlh = O.7h47) which is based on the exact Chaplygin function.

The Johns Hopkins University
Baltimore, Md., April 3, 1951
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APPENDIX A
SYMBOLS

a¥ velocity of sound

ao* stagnation velocity of sound
a,b,c,d constants

A,B,C,D constants

lFl(a,, B; z) confluent hypergeometric function

2Fl(a.,b,c; z) hypergeometric function

h width of Jet

b width of Jet at X = o
) o - )

k= (%) (-

ﬁl = ag

~ ao

K2 = 1+ co

ﬁ3 _ao(l + bo)

) (1 + ccr)2

k=M .a;=v(_2__i) ¢ 80 _ 4
2c2 b b

Ll
I
N

M local Mach number

Mo free-stream Mach number

NACA TN 2582
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M) (2)

Kumqer function

5 1 1n°\Pa(c-b) 1 v fa ab _
mn =>- ——g—->= == - == - l}] if —=1
)'l' cl" )‘l‘ 02 C 02

m=7Z
n positive integer
P pressure
Po stagnation pressure, pressure in vessel
D, free-stream pressure, pressure surrounding Jjet
Q arbitrary function of q (Q(q))
Q rate of total discharge
q local velocity
u X component of velocity
v Y component of velocity
w®) () Whittaker function
k,m
(n)
W'(n) () = Wy m (z)
k,m dz
XY coordinates in physical plane
Z complex variable (X + 1Y)
ab
\Iab(l+ co) _—(1+ co) 1if —2=1

Zy = ggﬁ JEB(l + coo)
(o4
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a,B constants
__1

B —

7 = Cp[Cy = 1.1

2 w2
¢ = Q(q) (defined by e(g_Z) - _l__TM_>

q
2 g2 2
¢ = (é) L (supersonic)
2/ 3 g2
2 g2 2
¢t = (é) ec _ & (subsonic)
2/ 3 of
¢] inclination of velocity vector
6o coordinate of source location, hodograph plane
6o slope of nozzle wall
A characteristic coordinate (O + 6)
A==
8o
Aosbo coordinates of source location in hodograph plane
i characteristic coordinate (-{I + 8)
7y + 1
u:
1 y - 1
*
v : Eg_}_;_yf a
p a4
q

v positive constant dependent on boundery conditions (n)\)
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p local density
Po stagnation density
Py free-stream density
a* .
g = f BO_ ﬂ ;'~.‘
q pq
- 2
T = 7 1 —-q
2 \a,*
4] potential function
¥ stream function

a 1/2
Q= j K—M% dq (supersonic)
B-*

1
=0+ =
'bt
a¥* 1/2
_ (1-m2) /

W= —_—  d4q (subsonic)

q q
N coordinate of source location in hodograph plane

@, . ® in free stream

85
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APPENDIX B
PROPERTIES OF WHITTAKER FUNCTIONS

Here are presented a few important properties of the Whittaker
function which are useful in the present investigation. Some of the
properties are given by Sharma in reference 59. He shows that:

Theorem I:

The functions Wi om (z) and Wie me1 (z) cannot have
a common zero (root). All roots of Vi m (z) are simple;
ﬁk,m (z) and Ve 1,m (z) cennot have a common root.
Between any two consecutive zeros of Wk}m (z) 1lies ome

and only one zero of Wk-l,m (z).

The proof is rather simple, See the reference.

Next, consider the Whittaker equation:

2 1
m - —
_d2W+ i ko Muoo (B1)
az2 oz 22
(n)
where W = Wk,m (z), the Whittaker function. In the present case,
1/2
z = 2nma (22 (-1-+a)>o (a>c>b>0),22=1 (B2)
c2 ¢ c2 .

where n 1is a positive integer and A 1is a positive constant.

k=nx(§-l)<o (B3)
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252 3 a
2 _1 n9fa 242 c
m =3 ——02 (C 1)<O for n~\ >ll»(a-c)
- (B)
242 3
m2=l—n)"(§-— >0 for n?A2<—C2
B2 ke ) c i(a - c)

In this case m2 - -}I < 0; the powerful Wintner theorem (refer-

ence Th) which requires k <O and m® - %;- >0 +to make

a%h m (2)

dazh

(-1 >0 (0 £z S« cannot be applied. Actually,

(n)

Vie m (z) may oscillate in the range -% < 0 < 0. But the monotonic

)

positive nature of Wl(:l,lm (z) for o 2 0 can be proved as follows:

Theorem II:
For nA >0 and 0 S0 <eo (L2M>0), then

(n)
Wk,m (Z) > 0.
The proof is as follows:

2
If equation (Bl) is multiplied by (%) = hnela(ig), there can be
c

written

42w nakgac(l + bo)
5 - = W=20

do (l + CU)2

or, more properly,

a1 _ n®2%a0(1 + bo)

do” - (1 + co)? (B)
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By the given conditions, as long as o 2 O,

n?x?ac(l + bo) >
2 20 (B6)
(1 + co)
a2y (n)
Therefore —5 and W have the same sign. But W =Wy g (z) is
. do
A I R
asymptotic to e € zX¥ = e ¢ m(g + or) c >0 for large
values of o and tends to O as o —»> 0. Hence W](:nzl (z) curves
J
-1 a°w
downward as o —> o and so must continue to do so while W~ — >0,
d

This proves the theorem.

There is another interesting feature of the Whittaker equation.
As long as m® is real and the function representing the boundary con-

dition is real, Wl(:?x)n (z) is always real, no matter whether m is
imaginary or not. For the present investigation, m 1is imaginary, but

W}(:I’lzl (z) 1is real (0 < 2 < ). This question has puzzled the author
for some time.
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Figure 1.~ Plot of —1. and Mach mumber M as a function of T. 7 = 1.k
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